C. 1. 11 -11\%

Service Manual

STEREO AMPLIFIER
 5A-610

@PIONEER

- This service manual is applicable to the KU type.

CONTENTS

1. SPECIFICATIONS . 3
2. FRONT PANEL FACILITIES 4
3. DISASSEMBLY . 6
4. PARTS LOCATION . 6
5. BLOCK DIAGRAM 8
6. LEVEL DIAGRAM . 8
7. CIRCUIT DESCRIPTIONS 9
8. ADJUSTMENTS . 10
9. EXPLODED VIEWS AND PARTS LIST 11
10. SCHEMATIC DIAGRAM, P.C. BOARD PATTERNS AND PARTS LIST
10.1 Miscellanea . 14
10.2 Schematic Diagram 15
10.3 P.C. Board Connection Diagram 18
10.4 Parts List of P.C. Board Assembly 21
11. PACKING . 22

1. SPECIFICATIONS

Semiconductors
ICs 3
Transistors 27
Diodes 18
Amplifier Section
Continuous power output of 45 watts* per chan-nel, min., at 80 hms from 20 Hertz to 20,000Hertz with no more than 0.03% total harmonicdistortion.
Total Harmonic Distortion (20 Hertz to 20,000 Hertz, 8 ohms, from AUX)
22.5 watts per channel power output
No more than 0.02%
Intermodulation Distortion (50 Hertz : 7,000 Hertz = $4: 1$
8 ohms, from AUX)
continuous rated power output . . No more than 0.03\%
22.5 watts per channel power output
. No more than 0.02\%
Damping Factor (20 Hertz to 20,000 Hertz, 8 ohms) 50
Input (Sensitivity/Impedance)
PHONO $2.5 \mathrm{mV} / 50$ kilohms
TUNER $150 \mathrm{mV} / 50$ kilohms
AUX $150 \mathrm{mV} / 50$ kilohms
TAPE PLAY 1, 2 $150 \mathrm{mV} / 50$ kilohms
Phono Overload Level (T.H.D. $0.05 \%, 1,000 \mathrm{~Hz}$)PHONO130 mV
Output (Level)
TAPE REC 1, 2 150 mV
Speaker A, B, OFF
Frequency ResponsePHONO (RIAA Equalization)
. 20 Hz to $20,000 \mathrm{~Hz} \pm 0.3 \mathrm{~dB}$
TUNER, AUX, TAPE PLAY 1, 2
10 Hz to $60,000 \mathrm{~Hz} \pm 3 \mathrm{~dB}$
Tone Control
BASS $\pm 10 \mathrm{~dB}(100 \mathrm{~Hz})$
TREBLE $\pm 10 \mathrm{~dB}(10,000 \mathrm{~Hz})$
Subsonic Filter $15 \mathrm{~Hz}(-6 \mathrm{~dB} / \mathrm{cct})$
Loudness Contour (Volume control set at -40 dB position)
. . . $+6 \mathrm{~dB}(100 \mathrm{~Hz})$, $+3 \mathrm{~dB}(10,000 \mathrm{~Hz})$
Hum and Noise (IHF, short-circuited, A network)
PHONO 82dB
TUNER, AUX, TAPE PLAY 1,2 100 dB
Miscellaneous
Power Requirements AC $120 \mathrm{~V}, 60 \mathrm{~Hz}$
Power Consumption 100W (UL)
Dimensions $420(\mathrm{~W}) \times 94(\mathrm{H}) \times 347$ (D) mm$16-9 / 16(\mathrm{~W}) \times 3-11 / 16(\mathrm{H}) \times 13-11 / 16(\mathrm{D})$ in
Weight (without package) 6.9 kg (15 lb 3oz)
Furnished Parts
Operating Instructions 1
NOTE:
Specifications and the design subject to possible modificationswithout notice due to improvements.

[^0]
2. FRONT PANEL FACILITIES

(1) POWER SWITCH

Set this switch to ON to supply power to the amplifier. There will be a short delay when it is set to ON, because the muting circuit has been actuated to suppress the unpleasant noise that is sometimes generated when the power is on and off.

(2) SPEAKER SELECTOR

Use this selector to select the speaker system.
OFF: Sound not obtained from speakers.
A: Sound obtained from speakers connected to the A speaker terminals.
B: Sound obtained from speakers connected to the B speaker terminals.

(3) BASS AND TREBLE CONTROLS

Use these controls to adjust the bass and the treble. If you set the tone switch to ON and turn the bass control to right from its center position, you will be able to emphasize the sound in the low-frequency range. Conversely, turning the bass control to the left from the center position, you will attenuate the sound.
You can use the treble control to adjust the sound in the high-frequency range.

(4) POWER METER

This meter allows you to read out the rated power level on the fluorescent display tube when speakers with a nominal impedance of 8 ohms are connected to the amplifier's speaker terminals.

(5) FUNCTION INDICATORS

The TUNER, PHONO, TAPE, AUX function indicators light up in accordance with the position of the function selector.

6) FUNCTION SELECTOR

Use this selector to select the program source. When set, the function indicator above the meter panel corresponding to the position of the function selector will light up. TUNER: Set here when listening to broadcasts on a tuner connected to the TUNER jacks.
(The TUNER function indicator lights up.)
PHONO: Set here when playing records on a turntable connected to the PHONO jacks.
(The PHONO function indicator lights up.)
TAPE 1: Set here when playing tapes on the tape deck connected to the TAPE 1 jacks.
(The TAPE function indicator lights up.)
AUX: Set here when listening to a program source which is connected to the AUX jacks.
(The AUX function indicator lights up.)

(7) VOLUME CONTROL

Use this control to adjust the output level to the speakers and headphones. Turn it clockwise to increase the output level. No sound will be heard if you set it to " 0 ."

(8) HEADPHONE JACK

Plug the headphones into this jack when you want to listen through your stereo headphones.

NOTE:
Set the speaker selector to OFF when listening only with headphones.

(9) SUBSONIC FILTER SWITCH

When this switch is set to the 15 Hz position, the subsonic filter with a cut-off frequency of 15 Hz is actuated. The subsonic filter serves to attenuate frequencies lower than 15 Hz in a $6 \mathrm{~dB} /$ oct slope. It is therefore effective in suppressing ultra-low-frequency noise which is generated by record warp and other causes. You cannot actually hear this noise but it is a factor in the generation of intermodulation distortion and it may damage your speaker system. Set this switch to the 15 Hz position during record play for the best effect.

(10) TONE SWITCH

Set this switch to ON when adjusting the bass and treble controls. When set to the upper (OFF) position, the tone control circuits are disengaged and frequency response is flat. This function is convenient for checking phono cartridge and speaker tone quality and listening room acoustics.

(11) POWER INDICATOR

When the power switch is set to ON this lamp lights up, indicating the amplifier is turned on.

LOUDNESS SWITCH

When listening to a performance with the volume control turned down, set this switch to ON and the bass and treble will be accentuated.
When the volume is low, the human ear finds it harder to hear the bass and treble than when the volume is high. The loudness switch is thus designed to compensate for this deficiency. By setting it to ON , the bass and treble come through much more strongly and the sound takes on a punch even when the volume control is turned down.

(13) TAPE 2 SWITCH

Set this switch to the ON position when monitoring a tape performance on a tape deck which you have connected to the TAPE 2 jacks or when monitoring a recording.

note:

Set the switch to the upper (OFF) position when listening to records or broadcasts, etc. selected by the function selector.

(14) BALANCE CONTROL

Use this control to balance the volume of the left and right channels. If the sound appears to be louder on the right, it means that the volume of the right channel is higher. Turn the balance control to the left and adjust.
Conversely, if the sound appears to be louder on the left, it means that the volume of the left channel is higher. Therefore, turn the balance control to the right and adjust.

3. DISASSEMBLY

Bonnet Case

Remove the four screws (1).

Front Panel

Remove the four screws
(2)

Bottom Plate

Remove the six screws
3

4. PARTS LOCATION

Front Panel View

- The \&mark found on some component parts indicates the importance of the safety factor of the part. Therefore, when replacing, be sure to use parts of identical designation.

Front View with Front Panel Removed

Top View with Bonnet Removed

Tone control assembly
GWG-138

5. BLOCK DIAGRAM

6. LEVEL DIAGRAM

7. CIRCUIT DESCRIPTIONS

Equalizer Amplifier

The SA-610 features a 3 -stage direct-coupled equalizer amplifier for greater reduction of noise and distortion.

Besides the use of an ultra low-noise transistor (2SC2602) in the first stage, the adoption of low impedance input resistance and equalizer circuit has contributed to an S / N ratio of at least 82 dB (at 2.5 mV input, IHF-A).

Power Amplifier

This all stage direct-coupled pure complementaly SEPP circuit features a current mirror load differential amplifier in the first stage, and incorporates the tone control circuit in the NFB loop.

Although the incorporation of the tone control circuits in the power amplifier stage reduces the number of elements that the signal has to pass through, and thereby further reduces noise, distortion, and cost, the power stage does require a higher gain and a higher degree of stability. In the SA-610, this high gain and high stability are achieved by a current mirror load differential amplifier in the first stage and by the use of a constant current circuit for the load of the predriver stage. Furthermore, the tendency for the pre-driver stage capacitance impedance load to cause deterioration in the high end frequency response is suppressed by inserting a capacitor (C) between the emitter of the pre-driver stage (Q2) and the base of the constant current circuit (Q1) as shown in Fig. 7-1. At frequencies where the reactance of this capacitor may be ignored, the push-pull action of Q1 and Q2 serves to counteract the high end frequency response deterioration.

The power amplifier stage is a complementary 2 -stage Darlington connection, resulting in an output power rating of $45 \mathrm{~W}+45 \mathrm{~W}(8 \Omega, 20 \mathrm{~Hz}-$ 20 kHz), harmonic distortion of less than 0.03% $(20 \mathrm{~Hz}-20 \mathrm{kHz}$ at rated output), and output power bandwidth of $5 \mathrm{~Hz}-50 \mathrm{kHz}$ (0.03% THD). Certainly a superb performance for an amplifier of this class is obtained.

Protection Circuit

Besides protecting the speakers if a DC voltage should happen to appear at the power amplifier stage outputs, this circuit also mutes the signal path when the power switch is turned on and off (See Fig. 7-2).

If for any reason a DC voltage (in excess of about $\pm 5 \mathrm{~V}$) should happen to appear in the output of the power amplifier stage, it is detected immediately by either Q23 or Q24. Q23 is turned on by a positive voltage, and Q24 by a negative voltage. In either case, Q25 is also turned off, thereby opening the relay contact to disconnect the power amplifier stage from the speakers.

The muting action when the power switch is turned on is achieved by delaying the rise of the Q25 base potential by means of the R95/C77 time constant circuit. When the power switch is turned on, C77 is charged up via R95, thereby increasing the voltage across both ends of this capacitor. When this voltage exceeds the zener voltage of the D15 zener diode, Q25 is biased in the forward direction, and is thereby turned on to close the relay contact.

When the power switch is turned off, C77 discharges rapidly via D 18 , resulting in Q25 being turned off, thereby opening the relay contact.

Fig. 7-2 Protection circuit

Fig. 7-1 Pre-driver stage

8. ADJUSTMENTS

8.1 IDLE CURRENT ADJUSTMENT

1. Set the SPEAKERS selector to the A position, and connect an 8Ω resistor to the speaker output terminals.
2. Turn the VOLUME control down to minimum level, turn the power on, and wait about 10 minutes.
3. Connect a DC voltmeter to the TP terminals (Lch; TP4 and TP3, Rch; TP2 and TP1) of the AF Amplifier Assembly (GWK-144).
4. Check that the voltage between TP4 and TP3 (Lch) lies within the DC $4 \mathrm{mV}-50 \mathrm{mV}$ range then make a similar check for the Rch (between TP2 and TP1). If the voltage is less than 4 mV , cut jumper wire A (Lch), and jumper wire B (Rch). If the voltage exceeds 70 mV , check for circuit failure.

8.2 OUTPUT INDICATOR ADJUSTMENT

1. Set the TONE CONTROL to the center position.
2. Set the SPEAKERS selector to the A position, and connect an 8Ω resistor and $A C$ voltmeter to the speaker output terminals.
3. Set the FUNCTION switch to the AUX position, and apply a $1 \mathrm{kHz}, 150 \mathrm{mV}$ signal to the AUX terminals.
4. Adjust the VOLUME control so that the voltage on the output terminals (SPEAKERS) read 9 V (AC).
5. Adjust VR1 (Lch) and VR2 (Rch) of the indicator assembly so that the output power indicator read 10 watts.

Fig. 8-1 Adjustment point

9. EXPLODED VIEWS AND PARTS LIST

Exterior Component

Parts List

NOTE:

- Parts without part number cannot be supplied.
- The mark found on some component parts indicates the importance of the safety factor of the part. Therefore, when replacing, be sure to use parts of identical designation.

Key No.	Part No.		Description
		ANE-269	
1.	ANonnet case		
2.	ABA-079		Screw
3.	AAD-200		Lever knob
4.	ANB-847		Front panel assembly
5.	AAB-222	Knob	
6.	AAB-223	Knob	
7.	AAB-221	Knob	
8.	ABA-186	Screw	
9.		Botom plate	
10.	ABA-066	Screw	

Interior Component

Parts List

Key No.	Part No.	Description
$\triangle 1$.	ATT-667	Power transformer
2.		Wire clip
3.		Frame
4.	GWS-215	Switch assembly
A 5	ASK-520	Lever switch
$\Delta 6$.	ACG-001	Capacitor
7.	GWX-460	Headphones assembly
8.	GWG-138	Tone control assembly
9.	AWV-007	F.L. assembly
10.		Cushion
11.		LED socket
12.	GWS-216	Switch assembly
13.	GWX-459	Volume assembly
14.		Cushion rubber
15.	AEL-320	LED
16.		Panel stay
17.		Heat sink
$\triangle 18$.	AKP-032	AC socket
19.		Rear panel
- 20.	ADG-023	Power code
21.	AEC-327	Strein relief
22.	AKE-051	Terminal
23.		Terminal (GND)
- 24.	AEK-100	Fuse
25.	GWK-144	AF amplifier assembly

Key No.	Part No.	Description
26.	ASK-171	Lever switch
27.	ASK-172	Lever switch
28.	ACT-130	Variable resistor
29.	AKB-063	Terminal
30.	AKB-064	Terminal
31.		
32.	AEC-672	Frame
33.	ABA-107	Foot assembly
34.	ABA-066	Screw
35.	ABA-234	Screw
36.		ABA-026

10．SCHEMATIC DIAGRAM，P．C．BOARD PATTERNS AND PARTS LIST

10．1 MISCELLANEA

NOTE：
－When ordering resistors，first convert resistance values into code form as shown in the following examples．
Ex． 1 When there are 2 effective digits（any digit apart from 0），such as 560 ohm and 47 k ohm （tolerance is shown by $J=5 \%$ ，and $K=10 \%$ ）．

$47 k \Omega-47 \times 10^{3}-473 \ldots R D^{1 / 4} P S$ 目㐾级 J
$0.5 \Omega-0 R 5$ ．．．．．．．．．．．．．．．RN2H 0 R
$1 \Omega-010$ ．．．．．．．．．．．．．．．．．RSIP 回回 K
Ex． 2 When there are 3 effective digits（such as in high precision metal film resistors）． $5.62 k \Omega 562 \times 10^{1} \quad 5621 \ldots R N^{1 / 4} S R$［5］［6］［2］$F$
－The mark found on some component parts indicates the importance of the safety factor of the part．Therefore，when replacing，be sure to use parts of identical designation．

Miscellaneous Parts

ASSEMBLIES

Part No．	Symbol \＆Description
GWK－144	AF amplifier assembly
GWG－138	Tone control assembly
GWS－215	Switch assembly
GWS－216	Switch assembly
GWX－459	Volume assembly
GWX－460	Headphones assembly
AWV－007	F．L．assembly

SEMICONDUCTORS

Part No．	Symbol \＆Description
2SA1108/A/Q or R	Q21，Q22
2SC2588/A/Q or R	Q19， $\mathbf{Q} 20$ hfe should have the same rank
AEL－320	D1 LED
CAPACITOR	
Part No．	Symbol \＆Description
\triangle ACG－001	C1 Capacitor 0．01／250V

OTHERS

Part No．	Symbol \＆Description	
A ATT－667	T1	Power transformer
Δ AEK－100	F1	Fuse
ASK－520	S8	Lever switch（POWER）
Δ AKP－032		AC socket
Δ ADG－023		Power code
		Front panel assembly
ANB－847		Terminal（SPEAKERS）
AKE－051		

List of Changed Parts for Factory Modification

List of changed parts information will be furnished when－ ever necessary and you are requested to amend parts number in this parts list．

Symbol	Part No．	Description

HEADPHONE Ass'y (GWX-460)

VOLUME Ass'y (GWX-459)

10.4 PARTS LIST OF P.C. BOARD ASSEMBLY

Parts List of Amplifier Assembly (GWK-144)

CAPACITORS

Part No.	Symbol \& Description
CCDSL 101J 50	C1, ${ }^{\text {c }}$
CEA 102M 50L	C54
CEA 221M 35L	C59
CEA 101M 50L	C60, C61, C55
CEA 101M 35L	C56, C 77
CEA 101M 10L	C83, 884
CEA 471M 6L	C49
CEA 470M 50L	C51
CEA 221M 10L	C18, C17
CEA 470M 10L	C33, C34
CEANL 010M 50	C71, C72
CEANL 2R2M 50	C25, C26
CEANL 100M 16	C3, C 4
CEANL R33M 50	C75, C76
CEANL R74M 50	C19, $\mathbf{C 2 0}$
CCDSL 030 C 50	C37, C38
CCDSL 100K 500	C41, C42
CCDSL 220J 50	C7, C 8
CCDSL 330J 50	C86, 887
CCDSL 470J 50	C5, C6, C21-22, C29-C32
CCDSL 560J 50	C15, C16, C27, C28, C88, C85
CCDSL 820J 50	C35, C36
CCDSL 151K 500	C43-C46
CKDYF 103250	C50
CKDYF $103 Z 500$	C39, C 40
COMA 473K 50	C47, $\mathrm{C48}$
CKDYX 473M 25	C78-C81
CQMA 122J 50	C11, Cl^{2}
COMA 183J 50	C9, 10
CQMA 563J 50	C23, C24
COMA 683J 50	C13, C14
ACG-017	C62
ACG-004	C58
ACH-215	C52, C 53
RESISTORS ${ }^{\text {Note: }}$	When ordering resistors, convert the resistance value into code form, and then rewrite the part no. as before.
Part No.	Symbol \& Description
RD $1 / 4 \mathrm{PM}$ M ${ }^{\text {d }}$	R1-R8, R13, R14, R17, R18, R21R50, R53, R54, R69, R70, R77-R79, R91-R93, R95, R105-R108
A RD\% PMFamJ	R19, R20, R51, R52, R55-R62, R73
RN1/4 PQODI	R9-R12, R15, R16
$\triangle \mathrm{RD} 1 / 2 \mathrm{PSF}$	R63, R64, R76, R80
RD $1 / 2$ PSCODJ	R67, R68, R71, R72
\triangle RS 1PGous	R74, R94, R102
$\triangle \mathrm{ACN}-070$	R65, R66

SEMICONDUCTORS

Symbol \& Description

| ACT-130 | | VR1 |
| ---: | :--- | :--- | | Variable resistor |
| :--- |
| ASK-171 |

Parts List of Tone Control Assembly (GWG-135)

CAPACITORS

Part No.	Symbol \& Description
COMA 303J 50	C63, C64
CQMA 124K 50	C65, C66
COSA 270K 50	C67, C68
CQMA 122K 50	C69, 670
CQMA 562K 50	C73, C74
RESISTORS ${ }^{\text {Note: }}$	When ordering resistors, convert the resistance value into code form, and then rewrite the part no. as before.
Part No.	Symbol \& Description
ACT-127	VR3, VR4 Variable resistor
RD $1 / 4$ PM	R81-R90, R101, R100

Parts List of Switch Assembly (GWS-215)

Symbal \& Description

S5 Slide rotary switch (SPEAKERS) R96, R97 R98, R99

11. PACKING

Parts List

Key No. Part No.
Description

1. ARB-35

Operating instructions
2. AHD-754 Packing case
3. AHA-239 Side pad

PIONEER ELECTRONIC CORPORATION 4-1, Meguro 1-Chome, Meguro-ku, Tokyo 153., Japan U. PRONEER ELECTAONICE CORPORATION 85 Oxford Drive, Moonachie, New Jersey O7O74, U.S.A. PMONEEA ELIETAONC dEUAOPE3 N.V. Luithagen-Haven 9, 2OBO Antwerp, Belgium
PMONTEA ELECTAONHCB ALBTAALIA PTY. LTD. $178-184$ Boundery Road, Braeside, Victoria 31 gS, Australia

[^0]: * Measured pursuant to the Federal Trade Commission's Trade Regulation rule on Power Output Claims for Amplifiers.

